gnet v1 文档

🎉 开始使用

前提

gnet 需要 Go 版本 >= 1.9。

安装

go get -u github.com/panjf2000/gnet

gnet 支持作为一个 Go module 被导入,基于 Go 1.11 Modules (Go 1.11+),只需要在你的项目里直接 import "github.com/panjf2000/gnet",然后运行 go [build|run|test] 自动下载和构建需要的依赖包。

使用示例

详细的文档在这里: gnet 接口文档,不过下面我们先来了解下使用 gnet 的简略方法。

gnet 来构建网络服务器是非常简单的,只需要实现 gnet.EventHandler接口然后把你关心的事件函数注册到里面,最后把它连同监听地址一起传递给 gnet.Serve 函数就完成了。在服务器开始工作之后,每一条到来的网络连接会在各个事件之间传递,如果你想在某个事件中关闭某条连接或者关掉整个服务器的话,直接在事件函数里把 gnet.Action 设置成 Close 或者 Shutdown 就行了。

Echo 服务器是一种最简单网络服务器,把它作为 gnet 的入门例子在再合适不过了,下面是一个最简单的 echo server,它监听了 9000 端口:

不带阻塞逻辑的 echo 服务器

Old version(<=v1.0.0-rc.4)
package main
import (
"log"
"github.com/panjf2000/gnet"
)
type echoServer struct {
gnet.EventServer
}
func (es *echoServer) React(c gnet.Conn) (out []byte, action gnet.Action) {
out = c.Read()
c.ResetBuffer()
return
}
func main() {
echo := new(echoServer)
log.Fatal(gnet.Serve(echo, "tcp://:9000", gnet.WithMulticore(true)))
}
package main
import (
"log"
"github.com/panjf2000/gnet"
)
type echoServer struct {
gnet.EventServer
}
func (es *echoServer) React(frame []byte, c gnet.Conn) (out []byte, action gnet.Action) {
out = frame
return
}
func main() {
echo := new(echoServer)
log.Fatal(gnet.Serve(echo, "tcp://:9000", gnet.WithMulticore(true)))
}

正如你所见,上面的例子里 gnet 实例只注册了一个 EventHandler.React 事件。一般来说,主要的业务逻辑代码会写在这个事件方法里,这个方法会在服务器接收到客户端写过来的数据之时被调用,此时的输入参数: frame 已经是解码过后的一个完整的网络数据包,一般来说你需要实现 gnetcodec 接口作为你自己的业务编解码器来处理 TCP 组包和分包的问题,如果你不实现那个接口的话,那么 gnet 将会使用默认的 codec,这意味着在 EventHandler.React 被触发调用之时输入参数: frame 里存储的是所有网络数据:包括最新的以及还在 buffer 里的旧数据,然后处理输入数据(这里只是把数据 echo 回去)并且在处理完之后把需要输出的数据赋值给 out 变量并返回,接着输出的数据会经过编码,最后被写回客户端。

带阻塞逻辑的 echo 服务器

Old version(<=v1.0.0-rc.4)
package main
import (
"log"
"time"
"github.com/panjf2000/gnet"
"github.com/panjf2000/gnet/pool/goroutine"
)
type echoServer struct {
gnet.EventServer
pool *goroutine.Pool
}
func (es *echoServer) React(c gnet.Conn) (out []byte, action gnet.Action) {
data := append([]byte{}, c.Read()...)
c.ResetBuffer()
// Use ants pool to unblock the event-loop.
_ = es.pool.Submit(func() {
time.Sleep(1 * time.Second)
c.AsyncWrite(data)
})
return
}
func main() {
p := goroutine.Default()
defer p.Release()
echo := &echoServer{pool: p}
log.Fatal(gnet.Serve(echo, "tcp://:9000", gnet.WithMulticore(true)))
}
package main
import (
"log"
"time"
"github.com/panjf2000/gnet"
"github.com/panjf2000/gnet/pool/goroutine"
)
type echoServer struct {
gnet.EventServer
pool *goroutine.Pool
}
func (es *echoServer) React(frame []byte, c gnet.Conn) (out []byte, action gnet.Action) {
data := append([]byte{}, frame...)
// Use ants pool to unblock the event-loop.
_ = es.pool.Submit(func() {
time.Sleep(1 * time.Second)
c.AsyncWrite(data)
})
return
}
func main() {
p := goroutine.Default()
defer p.Release()
echo := &echoServer{pool: p}
log.Fatal(gnet.Serve(echo, "tcp://:9000", gnet.WithMulticore(true)))
}

正如我在『主从多 Reactors + 线程/Go程池』那一节所说的那样,如果你的业务逻辑里包含阻塞代码,那么你应该把这些阻塞代码变成非阻塞的,比如通过把这部分代码放到独立的 goroutines 去运行,但是要注意一点,如果你的服务器处理的流量足够的大,那么这种做法将会导致创建大量的 goroutines 极大地消耗系统资源,所以我一般建议你用 goroutine pool 来做 goroutines 的复用和管理,以及节省系统资源。

各种 gnet 示例:

I/O 事件

gnet 目前支持的 I/O 事件如下:

  • EventHandler.OnInitComplete 当 server 初始化完成之后调用。
  • EventHandler.OnOpened 当连接被打开的时候调用。
  • EventHandler.OnClosed 当连接被关闭的之后调用。
  • EventHandler.React 当 server 端接收到从 client 端发送来的数据的时候调用。(你的核心业务代码一般是写在这个方法里)
  • EventHandler.Tick 服务器启动的时候会调用一次,之后就以给定的时间间隔定时调用一次,是一个定时器方法。
  • EventHandler.PreWrite 预先写数据方法,在 server 端写数据回 client 端之前调用。

poll_opt 模式

默认情况下,gnet 使用官方包 golang.org/x/sys/unix 实现基于 epollkqueue 的网络轮询器 poller,这种实现需要引入一个 fd->conn 哈希表,通过它可以用文件描述符 fd 找到对应的 connection 结构体,但现在用户可以在 go build 编译项目的时候加入构建标签 poll_opt,像这样:go build -tags=poll_opt,然后 gnet 会切换到另一种优化的实现,直接调用 epollkqueue 的系统调用,将文件描述符添加到监控列表中,同时将相应的 connection 结构体指针存储到 epoll_datakevent 中,在这种情况下,gnet 就能在 I/O 事件循环中摆脱掉 fd->conn 哈希表,将 void* 指针转换成 connection 结构体指针,通过这种优化,理论上应该可以得到更高的性能。

代码细节请浏览 #230

定时器

EventHandler.Tick 会每隔一段时间触发一次,间隔时间你可以自己控制,设定返回的 delay 变量就行。

定时器的第一次触发是在 gnet server 启动之后,如果你要设置定时器,别忘了设置 option 选项:WithTicker(true)

events.Tick = func() (delay time.Duration, action Action){
log.Printf("tick")
delay = time.Second
return
}

UDP 支持

gnet 支持 UDP 协议,所以在 gnet.Serve 里绑定允许绑定 UDP 地址,gnet 的 UDP 支持有如下的特性:

  • 网络数据的读入和写出不做缓冲,会一次性读写客户端,也就是说 gnet.Conn 所有那些操作内部的 buffer 的函数都不可用,比如 c.Read(), c.ResetBuffer(), c.BufferLength() 和其他 buffer 相关的函数;使用者不能调用上述那些函数去操作数据,而应该直接使用 gnet.React(frame []byte, c gnet.Conn) 函数入参中的 frame []byte 作为 UDP 数据包。
  • EventHandler.OnOpenedEventHandler.OnClosed 这两个事件在 UDP 下不可用,唯一可用的事件是 React
  • TCP 里的异步写操作是 AsyncWrite([]byte) 方法,而在 UDP 里对应的方法是 SendTo([]byte)

Unix Domain Socket 支持

gnet 还支持 UDS(Unix Domain Socket) 机制,只需要把类似 "unix://xxx" 的 UDS 地址传参给 gnet.Serve 函数绑定就行了。

gnet 里使用 UDS 和使用 TCP 没有什么不同,所有 TCP 协议下可以使用的事件函数都可以在 UDS 中使用。

使用多核

gnet.WithMulticore(true) 参数指定了 gnet 是否会使用多核来进行服务,如果是 true 的话就会使用多核,否则就是单核运行,利用的核心数一般是机器的 CPU 数量。

负载均衡

gnet 目前支持三种负载均衡算法:Round-Robin(轮询)Source-Addr-Hash(源地址哈希)Least-Connections(最少连接数),你可以通过传递 functional option 的 LB (RoundRobin/LeastConnections/SourceAddrHash) 的值给 gnet.Serve 来指定要使用的负载均衡算法。

如果没有显示地指定,那么 gnet 将会使用 Round-Robin 作为默认的负载均衡算法。

SO_REUSEPORT 端口复用

服务器支持 SO_REUSEPORT 端口复用特性,允许多个 sockets 监听同一个端口,然后内核会帮你做好负载均衡,每次只唤醒一个 socket 来处理 connect 请求,避免惊群效应。

默认情况下,gnet 不会有惊群效应,因为 gnet 默认的网络模型是主从多 Reactors,只会有一个主 reactor 在监听端口以及接收新连接。所以,开不开启 SO_REUSEPORT 选项是无关紧要的,只是开启了这个选项之后 gnet 的网络模型将会切换成 evio 的旧网络模型,这一点需要注意一下。

开启这个功能也很简单,使用 functional options 设置一下即可:

gnet.Serve(events, "tcp://:9000", gnet.WithMulticore(true), gnet.WithReusePort(true)))

多种内置的 TCP 流编解码器

gnet 内置了多种用于 TCP 流分包的编解码器。

目前一共实现了 4 种常见的编解码器:LineBasedFrameCodec, DelimiterBasedFrameCodec, FixedLengthFrameCodec 和 LengthFieldBasedFrameCodec,基本上能满足大多数应用场景的需求了;而且 gnet 还允许用户实现自己的编解码器:只需要实现 gnet.ICodec 接口,并通过 functional options 替换掉内部默认的编解码器即可。

这里有一个使用编解码器对 TCP 流分包的例子

📊 性能测试

TechEmpower 性能测试

# 硬件环境
* 28 HT Cores Intel(R) Xeon(R) Gold 5120 CPU @ 3.20GHz
* 32GB RAM
* Dedicated Cisco 10-gigabit Ethernet switch
* Debian 12 "bookworm"
* Go1.19.x linux/amd64

这是包含全部编程语言框架的性能排名前 50 的结果,总榜单包含了全世界共计 486 个框架,其中 gnet 排名第一

这是 Go 语言分类下的全部排名,gnet 超越了其他所有框架,位列第一,是最快的 Go 网络框架。

完整的排行可以通过 TechEmpower Benchmark Round 22 查看。

同类型的网络库性能对比

On Linux (epoll)

Test Environment

# Machine information
OS : Ubuntu 20.04/x86_64
CPU : 8 CPU cores, AMD EPYC 7K62 48-Core Processor
Memory : 16.0 GiB
# Go version and settings
Go Version : go1.17.2 linux/amd64
GOMAXPROCS : 8
# Benchmark parameters
TCP connections : 1000/2000/5000/10000
Packet size : 512/1024/2048/4096/8192/16384/32768/65536 bytes
Test duration : 15s

Echo benchmark

On MacOS (kqueue)

Test Environment

# Machine information
OS : MacOS Big Sur/x86_64
CPU : 6 CPU cores, Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
Memory : 16.0 GiB
# Go version and settings
Go Version : go1.16.5 darwin/amd64
GOMAXPROCS : 12
# Benchmark parameters
TCP connections : 300/400/500/600/700
Packet size : 512/1024/2048/4096/8192 bytes
Test duration : 15s

Echo benchmark

️🚨 证书

gnet 的源码允许用户在遵循 MIT 开源证书 规则的前提下使用。

👏 贡献者

请在提 PR 之前仔细阅读 Contributing Guidelines,感谢那些为 gnet 贡献过代码的开发者!

🙏 致谢

⚓ 相关文章

🎡 用户案例

以下公司/组织在生产环境上使用了 gnet 作为底层网络服务。

          

如果你的项目也在使用 gnet,欢迎给我提 Pull Request 来更新这份用户案例列表。

💰 支持

如果有意向,可以通过每个月定量的少许捐赠来支持这个项目。

💎 赞助

每月定量捐赠 10 刀即可成为本项目的赞助者,届时您的 logo 或者 link 可以展示在本项目的 README 上。

☕️ 打赏

当您通过以下方式进行捐赠时,请务必留下姓名、Github账号或其他社交媒体账号,以便我将其添加到捐赠者名单中,以表谢意。

💴 资助者

Patrick Othmer  Jimmy  ChenZhen  Mai Yang  王开帅  Unger Alejandro  Swaggadan Weng Wei

🔑 JetBrains 开源证书支持

gnet 项目一直以来都是在 JetBrains 公司旗下的 GoLand 集成开发环境中进行开发,基于 free JetBrains Open Source license(s) 正版免费授权,在此表达我的谢意。

🔋 赞助商

本项目由以下机构赞助: